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Abstract

A scheme treating diffusion and remeshing, simultaneously, in Lagrangian vortex methods is proposed. The vorticity
redistribution method is adopted to derive appropriate interpolation kernels similar to those used for remeshing in inviscid
methods. These new interpolation kernels incorporate diffusion as well as remeshing. During implementation, viscous split-
ting is employed. The flow field is updated in two fractional steps, where the vortex elements are first convected according
to the local velocity, and then their vorticity is diffused and redistributed over a predefined mesh using the extended inter-
polation kernels. The error characteristics and stability properties of the interpolation kernels are investigated using Fou-
rier analysis. Numerical examples are provided to demonstrate that the scheme can be successfully applied in complex
problems, including cases of nonlinear diffusion.
� 2005 Published by Elsevier Inc.
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1. Introduction

Lagrangian vortex methods [6,25] are tools for computing complex fluid flows. Several of the computa-
tional advantages of these methods are:

(1) While Eulerian methods introduce extra dispersion or dissipation, even in flows with zero velocity
gradient, such errors are minimized during advection in Lagrangian vortex methods.

(2) The condition of numerical stability is not restricted by the CFL condition.
(3) The support of particle distribution remains a small fraction of the total volume of the flow field, deter-

mined by where vorticity is confined. The method is endowed with natural �grid adaptivity�, and hence
the computational elements are utilized more efficiently.
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(4) The method provides a natural way to represent small vortical structures that arise at high Reynolds
numbers.

While Lagrangian vortex methods were originally formulated for inviscid flows, successful approaches
for viscous flows have been proposed [5,8,9,11,29,31]. In some methods, such as random walk [5] and dif-
fusion velocity methods [11], particles are transported while their strength remains fixed. In other methods,
the strength assigned to each particle is allowed to change without displacing the particles. In many cases,
more particles are introduced to capture the expanding region where vorticity is confined.

One popular algorithm is the PSE (particle strength exchange) scheme [9], in which the diffusion equation is
converted into integro-differential equations, which are discretized in space by approximating the integral
using a quadrature rule. The semi-discrete equations are again discretized in time in various different
ways—implicitly or explicitly—up to whatever order of accuracy is desired. This method has been successfully
applied to several complex flows [19,27,39,41], and has been extended to the case of anisotropic diffusion [10],
and to the case with spatially variable radius of the cutoff function [7].

The use of a quadrature rule in PSE requires relatively uniform particle distribution, and this naturally
necessitates frequent remeshing. Remeshing is also implemented in other methods, even in inviscid simulations
to satisfy other conditions. For instance, it has been observed that long-time accuracy of convection compu-
tation deteriorates severely due to the distortion of the particle distribution [6,14]. Several local regridding
schemes have been devised to solve this problem, by inserting new particles where inter-particle distance be-
comes too large [16,17,41]. These schemes are limited to geometrically simple flows, and tend to grow the num-
ber of particles rapidly, unless careful clustering and merging is also implemented. For these reasons, global
remeshing is now considered necessary in most Lagrangian particle methods, and the design and verification
of various remeshing schemes have become an active research area [1,3].

In this article, we design a scheme that treats diffusion and remeshing simultaneously and without addi-
tional ambiguity or computational overhead. The scheme, �redistribution onto a grid�, will be formulated as
an extension of the vorticity redistribution method [33], and cast in the form of interpolation kernels, which
resemble those used in inviscid remeshing [6,18].

The paper is organized as follows. In Section 2, the vorticity redistribution method is introduced. Next, we
develop the modified interpolation kernels in Section 3. The error characteristics and the stability properties of
these kernels are investigated in Section 4. We finally provide numerical examples in Section 5.

2. The redistribution method

The vorticity redistribution method, or simply the redistribution method, developed in [33] is a deter-
ministic approach to solve the constant-diffusivity diffusion equation. In this method, the fundamental
solution of the diffusion equation for each particle vorticity is approximated by a new set of particles
within a ball of a finite radius, whose locations and strengths are determined by satisfying a number
of �predictive moment matching conditions�. The latter enforce the requirement that the vorticity assigned
to the new particles have approximately the same moments, up to a certain order, as the moments of the
fundamental solution generated by the source particle. The new particle vorticity is obtained by redistrib-
uting the source particle strength onto the target particles, i.e., by transferring fractions of the source par-
ticle strength to the target particles nearby. The spatial resolution of the method is naturally defined by
the redistribution radius, that is, the radius of the ball in which the target particles for each source particle
lie.

How to obtain a redistribution formula that determines the correct redistribution fractions that satisfy
the predictive moment matching conditions depends on the specific problem of interest. When the funda-
mental solution of the diffusion equation is known explicitly, the moments of the fundamental solution
can be exactly determined, and the corresponding redistribution formula can be easily constructed [33].
However, for spatially varying or anisotropic diffusion, the explicit form of the fundamental solution is
often not available. To address this difficulty, a more general method to design redistribution formulae satis-
fying the moment matching conditions was proposed [13,32], in which the evolution equations for the mo-
ments of the fundamental solution of each source particle were discretized by explicit integration schemes,
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such as the forward Euler scheme. The redistribution formulae were obtained by applying the particle
approximation to evaluate the resulting integrals. This method, referred as the Galerkin formulation [21],
is more general, and hence we briefly describe it in this section.

Consider the one-dimensional heat equation with spatially dependent conductivity, m(x), as in [32]:
Lu � ou
ot

� o

ox
mðxÞ ou

ox

� �
¼ 0; ð1Þ
where u is the temperature, and the spatial variable is x. We assume that m(x) is positive and its pointwise value
and derivatives up to the second order are uniformly bounded. L has a fundamental solution Z(x, n, t, s) that
satisfies the equation
Lðx; t; ox; otÞZðx; n; t; sÞ ¼ dðx� nÞdðt � sÞ. ð2Þ
The particle approximation consists of the discrete sum of d distributions, i.e.,
un ¼
XN
i¼1

Cn
i dðx� xni Þ; ð3Þ
where xni denotes the location of the ith particle at the nth time step, and Cn
i is its strength. At t = 0,

C0
i ¼ uðx0i ÞDx, where x0i is the initial location of the ith particle. The initial locations of the particles are

assumed to be distributed over the support of the initial temperature field with an equal spacing Dx. At each
time step, for each source particle, we define the kth moment of the fundamental solution, Gn

k;i, and its approx-
imation, Gn

k;i, as follows:
Gn
k;i ¼

Z
Rd
ðx� xn�1

i ÞðkÞZðx; xn�1
i ;Dtd; 0Þdx; ð4Þ
and
Gn
k;i ¼

Z
Rd

XN
j¼1

f n
ijdðx� xnj Þ

 !
ðx� xn�1

i ÞðkÞ dx ¼
XN
j¼1

f n
ijðxnj � xn�1

i ÞðkÞ. ð5Þ
f n
ij is the redistribution fraction, that is, the fraction of the strength of the ith particle transferred to the jth
particle at the nth time step. We use standard notations, i.e., xðkÞ ¼ xk11 x

k2
2 x

k3
3 � � � xkdd , and jkj = k1 + k2 +

k3 + � � � + kd, where d is the dimension of the space. In this one-dimensional problem, d = 1, and hence,
x(k) = xk, and jkj = k. Dtd is the time step.

Next, multiplying (1) by ðx� xn�1
i Þk and integrating by parts, the evolution equations for Gn

k;i, where
0 6 k 6 2, can be obtained:
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ð6Þ
The redistribution formulae are designed by discretizing these equations using the forward Euler scheme and
utilizing the following expression for particle distribution:
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un�1 ¼
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The outcomes are the discrete equations describing the evolution of Gn
k;i expressed in terms of f n

ij :
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ð8Þ
Therefore, the corresponding redistribution formulae for f n
ij are
X

j

f n
ij ¼ 1;

X
j

f n
ijðxnj � xn�1

i Þ ¼ dm
dx

� �
x¼xn�1

i

Dtd;

X
j

f n
ijðxnj � xn�1

i Þ2 ¼ 2mðxn�1
i ÞDtd.

ð9Þ
Assuming that the redistribution radius scales as OðDt1=2d Þ, it can be shown that the global truncation error of
scheme (9) behaves as OðDt1=2��

d Þ, where � is a small positive real number, as shown in Appendix A. The pro-
cedure works in the same way for higher-order spatial accuracy [13]. The redistribution formulae (9) reduce to
those in [33] for the case of constant diffusivity.
3. Redistribution onto a uniform grid—the modified interpolation kernels

To determine f n
ij from the given redistribution formulae, we need to specify the target particle locations xni .

In the original treatment [33], the neighboring particles of each source particle were chosen as the target par-
ticles, i.e., the set of xn�1

i and that of xni were taken to be the same. More particles were introduced if the num-
ber of neighboring particles was not sufficient to achieve the desired accuracy. Although this approach makes
the entire process grid-free, the complex procedure necessary to deal with the arbitrariness of the number and
the locations of the target particles makes the original redistribution method expensive, especially in three-
dimensional simulations where the number of particles easily reaches several millions. In this section, we pro-
vide an alternative formulation to address this difficulty.

From the formulation described in the previous section, the following fact can be easily recognized: it is not
necessary to keep the same particle locations before and after each redistribution step, i.e., the set of xn�1

i and
that of xni in (7) need not be the same. For example, we can simply take a set of uniform grid points as the
target particle locations to develop a redistribution formula for each source particle. In that case, the arbitrar-
iness in the number and locations of target particles is eliminated, and the complex procedure of finding the
fractions is replaced by a much simpler one.

Since multi-dimensional generalization is straightforward, we consider the one-dimensional case first. We
concentrate on the case of constant diffusivity first. Suppose we have an equally spaced grid, located at
x = �Dx, 0, and Dx. We interpret these grid points as the target particle locations, i.e., x1 = �Dx, x2 = 0,
and x3 = Dx. Given that a source particle is located at x = x0, where jx0j < Dx

2
, the corresponding redistribution

formula, to the lowest order in R, is given by
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X3
j¼1

f0j ¼ 1;

X3
j¼1

f0jðxj � x0Þ ¼ 0;

X3
j¼1

f0jðxj � x0Þ2 ¼ 2mDtd.

ð10Þ
Solving these equations explicitly, we obtain the following redistribution fractions:
f01 ¼
2mDtd � x0Dxþ x20

2Dx2
;

f02 ¼
Dx2 � 2mDtd � x20

Dx2
;

f03 ¼
2mDtd þ x0Dxþ x20

2Dx2
.

ð11Þ
Although these expressions are enough for implementation, rewriting them in the form of an interpolation
kernel is more convenient for further discussion. For a given particle distribution un in the form of (3), we
define the interpolated particle distribution un+1 as
unþ1ðxÞ ¼
X
j2Z

dðx� jDxÞ
Z
R

k
jDx� x0

Dx

� �
unðx0Þdx0 ¼

XN
i¼1

Cn
i

X
j2Z

k
jDx� xni

Dx

� �
dðx� jDxÞ

 !
. ð12Þ
The interpolated particle distribution has particles only at x = jDx, where j 2 Z. We call k the interpolation
kernel, since it relates the initial particle distribution and the interpolated distribution. Usually k is of compact
support. Thus the interpolation of a particle is only done over its nearest grid points. Since (12) exhibits some
similarity to (7), we can easily convert (11) to the following interpolation kernel:
K2ðn; cÞ ¼

1
2
ð1� jnjÞð2� jnjÞ þ c2 1

2
6 jnj < 3

2
;

1� jnj2 � 2c2 jnj < 1
2
;

0 3
2
6 jnj;

8><
>: ð13Þ
where c ¼
ffiffiffiffiffiffiffiffiffi
mDtd

p
=Dx. The corresponding redistribution formulae approximate the diffusion process with a

global truncation error O(h), where h ¼
ffiffiffiffiffiffiffi
Dtd

p
[33], if c is kept constant during refinement. The notation K2

has been chosen intentionally. This expression yields one of the classical �inviscid� interpolation kernels
given in [6] at the limit of c ! 0, where it was also denoted as K2. One may realize that K2 becomes
the TSC (triangular-shaped cloud) interpolation kernel when c2 = 1/8. This fact can be used to estimate
the effective kinematic viscosity induced by the numerical diffusion when one uses the TSC interpolation
kernel for remeshing.

The procedure given above can be generalized to other kernels. Two of the most widely used interpolation
kernels, K3 and M 0

4, can also be extended to account for diffusion as follows:
K3ðn; cÞ ¼
1� 2c2 þ jnj 3c2 � 1

2

� �
� n2 þ jnj3

2
jnj < 1;

ð2� jnjÞ 1
6
ð3� jnjÞð1� jnjÞ þ c2

� �
1 6 jnj < 2;

0 2 6 jnj

8><
>: ð14Þ
and
M 0
4ðn; cÞ ¼

1� 5n2

2
þ 3jnj3

2
� c2ð2� 9n2 þ 6jnj3Þ jnj < 1;

1
2
ð2� jnjÞ2ð1� jnj � 2c2 þ 4c2jnjÞ 1 6 jnj < 2;

0 2 6 jnj.

8><
>: ð15Þ
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K3 is continuous, and M 0
4 2 C1ðRÞ. K3 approximates the diffusion process with a global truncation error O(h2),

and M 0
4, O(h). When c2 = 1/6, these two kernels coincide.

So far, we have discussed the one-dimensional cases only. The multi-dimensional generalization of these
interpolation kernels can be achieved in a trivial way for a uniform Cartesian grid. One can obtain redistri-
bution fractions in Rd simply by using the tensor product of the redistribution fractions obtained by the inter-
polation kernel acting on each coordinate. The resulting redistribution fractions automatically satisfy the
redistribution formulae given in [33].

The idea of redistributing particle strength onto uniform grid points can also be applied to the case of var-
iable diffusivity. Here, we present the interpolation kernel satisfying (9)
K0
3ðn; c; dmÞ ¼

1
6
ð2� nÞð6c2 þ 3dmð2� nÞ þ ð1� nÞð3� nÞÞ 1 6 n < 2;

1
2
ð2þ 2c2ð3n� 2Þ � nð1� nðn� 2Þ � dmð4� 3nÞÞÞ 0 6 n < 1;

1
2
ð2� 2c2ð3nþ 2Þ þ nð1� nðnþ 2Þ þ dmð4þ 3nÞÞÞ �1 6 n < 0;

1
6
ð2þ nÞð6c2 � 3dmð2þ nÞ þ ð1þ nÞð3þ nÞÞ �2 < n < �1;

0 2 6 jnj;

8>>>>>><
>>>>>>:

ð16Þ
where c2 = mDtd/Dx
2 and dm ¼ Dtd

Dx
om
ox. m and

om
ox should be evaluated at the source particle location. Because only

three equations are available in (9), while there are four unknown redistribution fractions, we imposed an
additional condition for the third-order moment, i.e.,

P
jf

n
ijðxnj � xn�1

i Þ3 ¼ dmDx3. The resulting kernel is con-
tinuous, and approximates the diffusion process with a global truncation error OðhM 0 Þ for all M 0 < 1, as shown
in Appendix A. As the notation implies, this expression gives K3 in (14) when dm = 0.

Again, multi-dimensional generalization can be made simply by taking tensor products. The procedure of
multi-dimensional generalization gives redistribution formulae which are different from those obtained di-
rectly from the Galerkin formulation given in [13]. For instance, in R2, for k1 = k2 = 1, Gn

k;i is O(h4) if it is
obtained by taking tensor products. On the other hand, according to [13], Gn

k;i must be exactly zero under
the same condition. However, as one can clearly see in this example, the difference only contributes at a higher
order than the error considered, hence these two different formulae are equivalent within the error considered.

The actual implementation of these interpolation kernels to simulate diffusion in vortex methods is a
straightforward generalization of the original redistribution method [33]. To solve the Navier–Stokes equation
in the velocity–vorticity formulation, we employ the viscous splitting algorithm [6,25]: the evolution of the
flow field is considered in discrete time steps. In each step, the vortex elements are first convected, and then
diffused by interpolation, i.e., the algorithm consists of substeps where the convective and the diffusive effects
are considered separately. In this way, the computational advantages of Lagrangian vortex methods, that is,
minimal dispersion/dissipation during the computation of convection, no restriction from the CFL condition,
and optimal utilization of computational elements, are automatically inherited without being compromised,
because convection is still dealt with in completely Lagrangian way.

It is convenient to define appropriate notations for different step sizes, because the time step for diffusion is
often chosen as a multiple of that for convection at high Reynolds number. Thus, from here on, the convection
time step size is denoted by Dtc, while the diffusion time step size is denoted by Dtd. If there is no need to dis-
tinguish between different time steps, as in Appendix A, we use Dt as Dtd.

Due to the core overlap condition imposed during the convection substep, the grid size for interpolation,
Dx, should be chosen such that Dx < r, where r is the radius of the cutoff function. The choice of Dtd and Dx is
further restricted by the stability bound on c2 associated with each interpolation kernel. These stability bounds
will be discussed in Section 4. To meet all these conditions simultaneously, one may first decide on r by con-
sidering the spatial resolution required for the solution, and then decide on a value of Dx that satisfies the
overlap condition. After that, Dtd can be chosen as a multiple of Dtc in the range of valid values for Dtd, which
should be decided by stability consideration.

We note that the use of these interpolation kernels for treating diffusion has the following advantages. First,
the use of a uniform grid eliminates the expensive linear optimization process used to find the fraction in the
original redistribution scheme, and results in a very efficient diffusion scheme. The high computational load
resulting from the optimization process was one of the most critical weaknesses of the original vorticity redis-
tribution method [6]. The second is its simplicity. An inviscid vortex code can be expanded easily to treat
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viscous flows. If the code already has a routine for remeshing onto a uniform grid, simply modifying the kernel
leads to a viscous flow code. Finally, the two processes, remeshing and diffusion, are treated in one step in such
a way that the dispersive errors introduced by remeshing are controlled by the concomitant diffusion process,
and provides an easy way to guarantee the stability of remeshing.

On the other hand, there are several potential weaknesses. The application of the method might require
the generation of a large data set for the storage of the grid points, as in other implementations of global
remeshing. However, only the grid points near the support of the particle distribution are relevant. If the
support of particle distribution is large, one may still avoid the problem of generating a large data array
by partitioning particles into several small clusters and performing interpolation for each cluster separately.
An elegant strategy of tree-structured grid storage is available [42], and can be easily adopted for the current
scheme. The order of approximation of the interpolation kernels presented here is relatively low. K3, which
has the highest order among the interpolation kernels given, is first-order in time and second-order in space.
However, constructing higher-order interpolation kernels is possible, though we do not pursue it in this
paper.

We end this section with few comments concerning the relation between the method proposed here and
other diffusion simulation approaches. The first is the finite difference method. One may treat diffusion and
remeshing by first performing remeshing through an inviscid interpolation kernel, then by applying an explicit
finite difference scheme on the remeshed particle distribution. Such a two-step approach is valid, but there are
differences between this and our one-step approach. The two-step approach does not in general yield particle
distribution identical to that obtained by the modified interpolation kernels. For instance, suppose that we
have only one source particle initially. If one first applies the inviscid K3 to this particle and then uses the
three-point centered finite difference formula in space and the explicit Euler scheme in time to treat diffusion,
the support of resulting particle distribution covers six grid points in general, which is larger than that covered
by the modified K3. If one uses the four-point one-sided finite difference formulae for the outermost remeshed
particles to limit the support of resulting particle distribution, some of moment conditions are violated. Actu-
ally, K3 given here represents the only particle distribution covering four points with all the moments up to the
third-order correct. Our one-step approach usually results in more efficient utilization of grid points.

We also note that a similar idea of using a grid to simulate diffusion was proposed in [24]. However, this
early treatment was based on the concept of resampling [6], i.e., the redistribution fraction onto each grid
point is determined by the local value of the fundamental solution, not by matching the moments. Since each
moment corresponds to an integral property such as the total circulation, the current scheme has better con-
servation properties. For example, the current method preserves the linear impulse in the case of constant dif-
fusivity, where the method in [24] cannot. Finally, we note that the use of a quadrature rule and the nature of
semi-discretization make it conceptually difficult to incorporate the idea of remeshing within PSE directly.
This is one reason why the discussion has been made on the basis of the redistribution method.

4. Error analysis of interpolation kernels

In this section, we analyze the error characteristics of the extended interpolation kernels presented in the
previous section. The purpose of this analysis is to obtain the stability bound of each kernel. We discuss
the dissipative or dispersive characteristics of the error for the low-frequency modes. Since the high-frequency
modes are all well damped. We also show that the dispersive nature of these interpolation kernels is changed
by the addition of diffusion.

To this end, we consider the one-dimensional linear advection–diffusion equation with constant flow speed
U, i.e.,
ou
ot

þ U
ou
ox

¼ m
o
2u
ox2

. ð17Þ
If we employ a typical operator splitting algorithm, the advection step is solved by particle methods without
introducing any additional error at each time step. One can simply discretize the initial condition using par-
ticles, and displace the particles to obtain the field at any time instance. The error is introduced during the
diffusion step, or equivalently during the remeshing step, by the application of an interpolation kernel.
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Let Dt be the time step for interpolation and Dx be the grid size. We denote xj = jDx as the fixed location of
the jth grid point and unj as the strength of the particle located at xj immediately following the nth remeshing
step. We assume for convenience that 0 < C � UDt

Dx < 1
2
. Since interpolation is made onto the nearest grid points

of the source particle, UDt can be arbitrarily large. This restriction makes it possible to interpret the resulting
evolution equation of uj as an Eulerian scheme, making the analysis easier. The results obtained from this
analysis are not affected by the removal of this restriction, since we can always use a transform
x 0 = x � ntDx/Dt, where n is chosen such that the flow speed measured in the new coordinate system satisfies
the restriction.

We first consider K2. Since particles are always remeshed onto the uniform grid points at the end of the step,
the position of the jth particle at the beginning of a new time step is xj. In the advection step, the particles are
displaced by UDt, i.e., ~xnj ¼ xj þ UDt, and ~unj ¼ unj , where ~xj is the location of the displaced jth particle, and ~uj is
its strength. In the remeshing step, the displaced particles are interpolated onto the uniform grid points. Thus,
we have
unþ1
j ¼ unj�1K2

xj � ~xnj�1

Dx
; c

� �
þ unjK2

xj � ~xnj
Dx

; c
� �

þ unjþ1K2

xj � ~xnjþ1

Dx
; c

� �
. ð18Þ
Again, c ¼
ffiffiffiffiffi
mDt

p

Dx . This formula actually gives the Lax–Wendroff scheme when c2 = 0.
To analyze the error characteristics from this expression, one usually calculates the amplification factor and

the phase speed error [4]. The analysis is performed in the wave number space. We take the Fourier transform
of (18) using the following substitution:
unj ¼
X
h

tnhe
ijh; ð19Þ
where i ¼
ffiffiffiffiffiffiffi
�1

p
, and h = 2pkDx. Reorganizing (18) by using this substitution, we can find
tnþ1
h ¼ gðC; c; hÞtnh; ð20Þ
where
gðC; c; hÞ ¼ 1� c2 � C2 þ c2 þ C2

2
þ C

2

� �
e�ih þ c2 þ C2

2
� C

2

� �
eih. ð21Þ
From this amplification factor, we first obtain the stability bound. In practice, particles can be placed any-
where, and hence we do not have any control over C and h. Thus, we need to obtain the range of c where
jg(C, c, h)j 6 1 for all 0 6 C 6

1
2
and 0 6 h 6 2p. Either analytically or numerically, we can compute

jg(C, c, h)j2 to obtain this range of valid c. For K2, the range of valid c is c2 6 3/8. Within this range, the l2

norm of the discretized field variable is decreased by the application of K2.
To analyze the error characteristics of the low-frequency modes, we compare the effect of dispersion and

that of dissipation, in an order of magnitude sense. The exact solution in the wave number space is given by
tnþ1
h ¼ e�i2pkUDt�4p2mk2Dttnh ¼ e�iCh�c2h2tnh. ð22Þ
This implies that the rate of norm decay and the phase speed error should be analyzed in the following way:
gðC; c; hÞ ¼ e�iChþiAðC;c;hÞ�c2h2�BðC;c;hÞ; ð23Þ

where A(C, c, h) represents the phase speed error and hence the dispersive effect, and B(C, c, h) represents the
rate of additional norm decay and hence the effect of numerical dissipation. It is hard to get exact expressions
of A(C, c, h) and B(C, c, h), but we can get the following asymptotic formulae for the leading order terms by
taking the logarithm of (21) and expanding it in series
AðC; c; hÞ ¼ 1

6
Cð1� 6c2 � C2Þh3 þOðh5Þ;

BðC; c; hÞ ¼ 1

24
12c4 � 3C2ðC2 � 1Þ � 2c2ð1þ 6C2Þ
� �

h4 þOðh6Þ.
ð24Þ
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This analysis shows that the leading order error induced by the application of K2 is strictly dominated by its
dispersive component at the low-frequency regimes, i.e., as h ! 0. When c2 6 1/8, the leading order term of
A(C, c, h) is greater than or equal to 0 for all 0 6 C 6

1
2
and 0 6 h 6 2p. Thus these low-frequency modes show

lagging phase error, and induce spurious oscillations at the trailing edges of the wave packets [38,40]. Espe-
cially when c2 is very small, these unphysical oscillations can survive dissipation for a time long enough to
couple with other parts of the equations in more complex equations, e.g., the Euler equation or the Na-
vier–Stokes equation at high Reynolds number.

If the equation of interest is extremely sensitive to such spurious oscillations, one may completely sup-
press these oscillations by enforcing the monotonicity preservation condition [22,40]. To achieve this, one
can simply adjust c2 to make these interpolation kernels non-negative by choosing Dx and Dtd appropri-
ately. For K2, when 1/8 6 c2 6 3/8, the interpolation kernel is guaranteed to be non-negative everywhere.
A non-negative interpolation kernel gives non-negative redistribution fractions, and hence makes the
resulting scheme TVD, which guarantees the preservation of monotonicity [22,40]. However, since these
interpolation kernels have been successfully used with c2 = 0 in many previous inviscid vortex simulations
[18], we conclude that the use of non-negative interpolation kernels may not lead to serious instability in
vortex simulations. In other applications, there are still possibilities that these spurious oscillations may be
troublesome.

It is interesting to see that the dispersion relation can be significantly modified by the addition of diffusion:
especially when c2 > 1/8, the low-frequency modes may show leading phase error for certain values of C. This
threshold actually coincides with the lower bound of the range of c2 yielding K2 non-negative.

For K3 and M 0
4, we only state the results briefly. For K3, the amplification factor is given by
gðC; c; hÞ ¼ C c2 þ 1

6
ðC � 1ÞðC þ 1Þ

� �
e�2ih þ c2 þ C � 3c2C þ C2

2
� C3

2

� �
e�ih þ 1

� 2c2 � C
2
þ 3c2C � C2 þ C3

2
þ ð1� CÞ c2 � 1

6
ð2� CÞC

� �
eih. ð25Þ
When c2 6 1/2, jg(C, c, h)j 6 1 for all 0 6 C 6
1
2
and 0 6 h 6 2p. This gives the stability bound as c2 6 1/2. We

can also get the asymptotic expressions for A(C, c, h) and B(C, c, h).
AðC; c; hÞ ¼ 1

60
Cð2þ C � C2 � 10c2Þð1� 3C þ 2C2Þh5 þOðh7Þ;

BðC; c; hÞ ¼ 1

24
ð12c4 � c2ð2þ 12C � 12C2Þ þ Cð2� C � 2C2 þ C3ÞÞh4 þOðh6Þ.

ð26Þ
For small values of c2, the leading order term in A(C, c, h) is greater than or equal to 0, and the application of
K3 may also result in spurious oscillations at the trailing edge. To suppress these oscillations completely, one
can choose 1/6 6 c2 6 1/2 to make K3 non-negative.

For M 0
4, we get
gðC; c; hÞ ¼ 3c2C2 � 2c2C3 � C2

2
þ C3

2

� �
e�2ih þ c2 þ C

2
þ 2C2 � 9c2C2 � 3

2
C3 þ 6c2C3

� �
e�ih

þ 1� 2c2 � 5C2

2
þ 9c2C2 � 6c2C3 þ 3C3

2
þ c2 � C

2
þ C2 � 3c2C2 � C3

2
þ 2c2C3

� �
eih. ð27Þ
The stability bound is given by c2 6 1/2. The asymptotic expressions for A(C, c, h) and B(C, c, h) are given by
AðC; c; hÞ ¼ 1

6
Cð1� 6c2Þð1� 3C þ 2C2Þh3 þOðh5Þ;

BðC; c; hÞ ¼ 1

24
ð12c4 � 2c2ð1þ 24C2 � 48C3 þ 24C4Þ þ 9C2ðC � 1Þ2Þh4 þOðh6Þ.

ð28Þ
Again, the leading order term in A(C, c, h) is greater than or equal to 0 for c2 6 1/6, and hence the low-fre-
quency modes show lagging phase error. Interestingly, when c2 > 1/6, A(C, c, h) becomes non-positive for
any C, and the low-frequency modes show leading phase error. The non-negativity of M 0

4 can be achieved
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by choosing 1/6 6 c2 6 1/2. Again, the threshold of the radical change of the dispersion relation for low-fre-
quency modes coincides with the lower bound of c2, yielding non-negativity.

For K0
3, it is hard to get a precise stability bound, since there is another parameter dm. Numerical calculation

of the upper bound of jg(C, c, h)j shows that jdmj should remain small when c2 is small. However, for moderate
values of c2, the restriction on dm is not severe. We also note that dm approaches 0 if one refines the resolution
while keeping c2 constant. Thus, for most cases, one can just check the bound on c2, for which one may consult
the case of K3. The region of non-negativity for K0

3 is a convex set in (c2, dm) plane, whose boundary is de-
scribed by the following set of equations:
c2 � 1

2
¼ 0; 4þ 9d2

m � 24c2 ¼ 0;

20þ 27jdmj � 162c2jdmj þ 54jdmj3 � 2ð7� 18c2 þ 9d2
mÞ

3=2 ¼ 0.

ð29Þ
5. Numerical examples

In this section, we discuss the results of a number of computations using the modified interpolation kernels.
We provide three numerical examples of three-dimensional vortex simulations. Next, a nonlinear reaction–dif-
fusion problem is solved to demonstrate the applicability of the method to cases of spatially varying diffusion
coefficient.

5.1. Vortex rings

The behavior of vortex rings has been studied intensively, and hence they serve as good examples to check
the capability of a numerical method [34]. We show results of three examples: evolution of a vortex ring at an
intermediate Reynolds number, asymptotic drift of a vortex ring, and a case of side-by-side collision of two
vortex rings.

We first briefly discuss the numerical method. A viscous splitting algorithm is employed. During the con-
vection step, we solve the equations of motion for inviscid incompressible flow in vorticity transport form:
Dx
Dt

¼ x � rv;

r � v ¼ 0;
ð30Þ
where x = $ · v, and v is the velocity. The numerical solution proceeds by discretizing the vorticity field onto
overlapping vector elements, each centered at vci with volume dVi and vorticity xi
xðx; tÞ ¼
XN
i

½xi dV i�ðtÞ/rðx� vci ðtÞÞ. ð31Þ
The vorticity associated with each element is localized by a radially symmetric cutoff function /r of radius r,
where /rðxÞ ¼ 1

r3 /ð
jxj
r Þ. We use the low-order algebraic kernel as the cutoff function [23,41]. Each vortex ele-

ment is described by a �stick�, decomposing the particle strength [xidVi](t) into a positive scalar weight Ci times
a material line element dvi(t). The vector dvi points in the direction of the vorticity, and is ascribed to two
nodes. Nodes are simply advected by the velocity field:
dvi
dt

¼ vðviÞ. ð32Þ
Advecting the nodes accounts for the material line element deformation, and thus for stretching and tilting of
the vorticity xidVi. A second-order predictor/corrector scheme with adaptive time-step control is used for
time integration of the ordinary differential equations in (32), where the velocity at each node v(vi) is evaluated
by an adaptive tree-code [23]. When jdvij of a given element exceeds 0.9r, a new node is added halfway be-
tween the original two nodes. The parallel implementation of the adaptive tree-code is achieved by domain
decomposition using the k-means clustering technique [26].
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During the diffusion step, we use K3 to interpolate the particle strength [xidVi] of each vortex element onto
target particles on a uniform grid. Following the interpolation, we eliminate particles with jxidVij < jxdVjdel
to control the problem size. Next, each target particle on the grid is converted back into a stick, having its
center vci at the grid point and jdvij = 0.6r. Because jdvij defines the length scale at which $v is evaluated
for the calculation of stretching, one should choose jdvij comparable to r, which defines the spatial resolution
of the simulation. If jdvij is too small, stretching is evaluated at a length scale that is not well resolved. On the
other hand, jdvij should not be too large to avoid a quick increase in number of elements, since we add a new
node when jdvij > 0.9r. Our jdvij is chosen via a tuning process considering these conditions. After the con-
version of the target particles into sticks, the code can start the convection step again using these sticks as
its initial condition.

All of the following simulations were performed on the IBM SP-RS/6000 located at the National Energy
Research Scientific Computing Center (NERSC).

5.1.1. Evolution of a vortex ring at an intermediate Reynolds number

The first example is a single vortex ring at ReC = C/m = 500. A ring of radius R and core radius a is initially
placed at the y = 0 plane. The core of the ring is represented as
x/ ¼ K
p

C
a2

exp �K
R2

a2
þ r2

a2
� 2Rr

a2
sin h

� �� �
; ð33Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; tan h ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
Þ=y, and K = (2.24182)2/4. To make the initial distribution

smooth, an image ring was placed across the axis of symmetry so that x/ = 0 at the y-axis. The ring has unit
circulation and unit radius, i.e., C = 1 and R = 1. The core radius is chosen to be a/R = 0.35. This set of
parameters makes the initial conditions identical to those of the axisymmetric spectral simulation performed
by Stanaway et al. [35,36].

We performed two different runs. The first is a fully three-dimensional simulation at Dtc = Dtd = 0.5,
r = 0.1, Dx = 0.07, jxdVjdel = 10�8. In the second case, a 20� section of the vortex ring is simulated at higher
spatial resolution, where Dtc = Dtd = 0.25, r = 0.05, Dx = 0.035, jxdVjdel = 10�10. If an element lies outside
the 20� section, the element is rotated into the domain using azimuthal symmetry. Since the fully three-dimen-
sional run did show a symmetry in the azimuthal direction during the period of interest, the simulation using
the 20� section is expected to behave similarly.

The results are reported in the following dimensionless variables, which were also used in [35,36]. The
dimensionless speed of the vortex ring centroid is given by
U ¼ U c

ðI0=qÞ1=2

m3=2
; ð34Þ
where I0 is the initial linear impulse of the ring, and Uc is the speed measured in the computational units. We
also use dimensionless time, which is scaled as
t ¼ t
m2

I0=q
; ð35Þ
and shifted to match the initial time reported in [35,36].
In Fig. 1, the speed of the vortex ring centroid is plotted. For comparison, the curve reported in [35,36] is

also shown. The values are underestimated in the lower resolution run, but the higher resolution run shows a
close match. At the later stage, where diffusion plays a dominant role in establishing the vorticity distribution,
close agreement is observed at both resolutions. The circulation of the vortex ring is plotted in Fig. 2. Unlike
the initial speed, which is more strongly affected by convection than diffusion, the evolution of the circulation
is well captured even by the lower resolution run.

We also show vorticity contours of the high resolution run on the z = 0 plane in Fig. 3. We have chosen the
same instances as those reported in [35,36] for one-to-one comparison. The contour levels remain the same for
all times in this figure. To recover the contour levels used in [35,36], we have matched the diameter of the out-
ermost solid contour at the initial condition, and the difference between the solid lines is set to be a factor of 10
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Fig. 1. Speed of the vortex ring verses time. Solid, 20� section simulation at high resolution; dash-dot, full simulation at low resolution;
dashed, Stanaway et al. [35,36]. Dots on the solid curve correspond to the instances shown in Fig. 3.
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Fig. 2. Circulation of the vortex ring verses time. Solid, 20� section simulation at high resolution; dash-dot, full simulation at low
resolution; dashed, Stanaway et al. [35,36].
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larger than between the dashed ones. Comparing Fig. 3 to that reported in [35,36], we see that our simulation
does reproduce the details of the vortex ring correctly. Even the subtle structure of the tail is well matched. We
also note that the linear impulse of the ring is preserved within 0.9% for the duration of the simulation in both
of our simulations. The number of vortex elements at the end of the simulation was around 500,000 for both
of our simulations.
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Fig. 3. The evolution of a single vortex ring. Vorticity contour at several instants in time. The contour levels for dashed lines vary from
jxzj = 0.024 to jxzj = 0.24. The contour levels for solid lines vary from jxzj = 0.24 to jxzj = 2.4. For lines of the same type, the vorticity
varies linearly. (a) t ¼ 6:75� 10�5, (b) t ¼ 7:48� 10�5, (c) t ¼ 8:21� 10�5, (d) t ¼ 9:06� 10�5, (e) t ¼ 10:03� 10�5 and (f)
t ¼ 11:85� 10�5.
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5.1.2. Asymptotic drift of a vortex ring

The second example is the long-time asymptotic drift of a vortex ring. The centroid speed under these con-
ditions was studied by Rott and Cantwell [30], and we compare the result of our simulation to these theoretical
estimates.

Initially, we place a Stokes vortex ring at the y = 0 plane. The vorticity distribution of a Stokes vortex ring
is given by
x/ ¼ I0=q

8p3=2ðmtIÞ2
sin hg expðg2Þ; ð36Þ
where g ¼ r=
ffiffiffiffiffiffiffiffi
4mtI

p
. r and h are defined in the same way as in the previous example. The ring has unit linear

impulse, i.e., I0/q = 1, and the kinematic viscosity is chosen to be m = 1 for simplicity. With this choice, the
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only parameter that must be specified is the initial time tI, which is chosen to be tI = 1/900. The initial Rey-
nolds number is ReI = (I0/q)

1/2/(mtI)
1/2 = 30. The numerical parameters used are: Dtc = Dtd = 0.0003, r = 0.05,

Dx = 0.03, jxdVjdel = 10�12. To limit the size of the simulation, we again follow the evolution of a 20� section
of the ring, assuming azimuthal symmetry. The 20� section of the Stokes vortex ring is initially discretized into
more than 80,000 elements, which gives smaller inter-particle distance than that specified by Dx. Still, the ini-
tial centroid speed of the vortex ring is naturally underestimated, since the numerical parameters, such as r,
are chosen to match the resolution required for the later stage. Note that our purpose is to study the long-time
asymptotic drift, where diffusion is expected to dominate the dynamics.

The speed of the long-time asymptotic drift of a single vortex ring is given as follows [30]:
U ¼ 7

15
ð8ptÞ�3=2 � 0:0037038t�3=2. ð37Þ
This theoretical result was also well verified by the axisymmetric simulations of Stanaway et al. [35,36]. As
shown in Fig. 4, where the speed of the vortex ring centroid is plotted, the result of our simulation matches
(37) well as t increases.

Figs. 5 and 6 show the evolution of the circulation and that of the kinetic energy respectively. From the
expression of the Stokes vortex ring, it can be shown that the circulation must evolve as t�1

, and that the
kinetic energy must evolve as t�3=2

. Our simulation matches these trends exactly. The linear impulse of the ring
is preserved within 0.04 % for the duration of the simulation. The error in the linear impulse increases mostly
at the initial stage, where convection still affects the evolution of the vortex ring. At the later stage, where dif-
fusion dominates the evolution, the error in the linear impulse does not increase much, showing that interpo-
lation indeed preserves the linear impulse. The number of vortex elements at the end of the simulation was
around 300,000.

5.1.3. Side-by-side collision of two vortex rings

The final example of vortex calculations is the interaction of two vortex rings; the case studied by Kida et al.
[15]. As an initial condition, two identical vortex rings are placed side-by-side. The centers of the vortex rings
are placed on the x-axis, separated by a distance s. The radius of each ring is R. We use a Gaussian vorticity
distribution within the core
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Fig. 4. Speed of the vortex ring verses time. Solid, present study; dashed, Eq. (37) [30].
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x/ ¼ x0 exp � r
a

� 	2� �
; ð38Þ
where r is the distance from the core centerline, x0 is the maximum vorticity at the core center. The nominal
circulation of the vortex ring is px0a

2. Note that (38) is equivalent to (33) with the proper change of variables.
We use different representations to simplify the comparison with the reference cases.
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A set of parameters similar to Case I in [15] is chosen, namely, R = 0.982, a = 0.393, s = 3.65, x0 = 23.8,
and m = 0.01, which makes ReC = 1153 based on the nominal circulation. The rings are not inclined with re-
spect to the y = 0 plane. This condition is not identical to that of Case I in [15], since the simulation performed
in [15] was spatially periodic, while our rings are isolated in R3. Due to periodicity, the evolution of the vortex
rings in [15] turned out to be slower. Thus the comparison between these two cases can be qualitative only.

The numerical parameters used are the following: Dtc = 0.05, Dtd = 0.1, r = 0.2, Dx = 0.090909, and
jxdVjdel = 5 · 10�7. The vortex rings move toward the x = 0 plane, as they travel in the y direction, through
Fig. 7. Iso-surfaces of the vorticity norm jxj = 2.0. (a) t = 0.0, (b) t = 3.0, (c) t = 4.0 and (d) t = 5.0.
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their mutual induction. They approach each other, and collide along the x = 0 plane as shown in Fig. 7. The
collision promotes the establishment of large vorticity gradients, which are then gradually annihilated by dif-
fusion. Eventually, the two rings merge into a distorted single ring. The evolution of colliding rings shown in
Fig. 7 is similar to that depicted in [15]. In particular, one can recognize the formation of threads on the front
of the vortex tube, which are remnants of the anti-parallel vortices at the contact point. These threads were
also observed in [15].

The interaction can be seen in Figs. 8 and 9, where the contours of xz and xx are plotted, respectively. As
depicted in Fig. 8, the outer cores move upward faster than the inner cores, and induce a flow that forces the
inner cores toward the x = 0 plane. As the inner cores collide, the outer vortex tubes extend across the x = 0
plane resulting in the formation of bridges, as shown in Fig. 9. During this first reconnection, the circulation of
each of the inner cores decreases rapidly, while the circulation of each of the bridges increases, which can be
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Fig. 8. Contour of xz at z = 0. Levels plotted are 0.5, 1, 2, 4, and 8. Solid and dashed lines represent positive and negative values
respectively. (a) t = 0.0, (b) t = 3.0, (c) t = 4.0 and (d) t = 5.0.
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Fig. 9. Contour of xx at x = 0. Levels plotted are 0.5, 1, 2, 4, and 8. Solid and dashed lines represent positive and negative values
respectively. (a) t = 3.0, (b) t = 4.0, (c) t = 5.0 and (d) t = 6.0.
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seen in Fig. 10. This transfer of circulation was also observed in [15]. The number of vortex elements for this
simulation remains around 450,000 by the end of the simulation. The linear impulse is preserved within 0.7 %.

Finally, we note that the computational time spent for the interpolation step remains indeed small com-
pared to that spent on the calculation of convection for all the simulations reported in this paper. The differ-
ence becomes more pronounced as the number of vortex elements increases. In a numerical experiment using 2
million vortex elements on 384 SP POWER3 processors, the computational time for one interpolation step
was less than 10% of the computational time of one single prediction step.

5.2. Nonlinear reaction–diffusion system

In this section, we show that the interpolation kernels can be used for treating nonlinear problems as well.
We consider the following one-dimensional reaction–diffusion problem:
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Fig. 10. Evolution of circulation around interacting vortex tubes. Solid, circulation around the cross-section of an inner core on the z = 0
plane; dashed, circulation around the cross-section of a bridge on the x = 0 plane; dash-dot, the sum of these two circulations.
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oh
ot

¼ o

ox
h2

oh
ox

� �
� 2h

oh
ox

� �2

for x 2 ð0; 1Þ; t > 0; ð39Þ
where the initial and the boundary conditions are given as follows:
hðx; 0Þ ¼ hIðxÞ ¼
2

3þ 2x
; ð40Þ

oh
ox

¼ 0 for x ¼ 0 and 1; t > 0. ð41Þ
Eq. (39) models thermal conduction in solid crystalline molecular hydrogen, and the following analytical solu-
tion was obtained in [28]:
h ¼ hþ p�1=2

Z
R

A0ðx̂þ 2t1=2bÞ expð�b2Þdb;

x ¼ hx̂þ p�1=2

Z
R

Aðx̂þ 2t1=2bÞ expð�b2Þdb;
ð42Þ
in which x̂ is an extensible distance coordinate,
h ¼
Z 1

0

hIðxÞ�1dx
� ��1

¼ 1

2
; ð43Þ
and A is odd, of period 2=h, and given over a half period by solving
Z AðcÞþhc

0

hIðxÞ�1 dx ¼ c; ð44Þ
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which yields
AðcÞ ¼

1
2
�3� cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 8c

p� �
0 6 c 6 2;

�Að�cÞ �2 < c < 0;

periodic in 4 otherwise.

8><
>: ð45Þ
A 0 is the derivative of A. The expression in (42) can be easily integrated numerically to obtain the pointwise
value of the solution with high accuracy.

To solve the problem numerically, we employ the following procedure:

(1) Initialize the particles: set n = 0, xnj ¼ ði� 1=2ÞDx, and Cn
j ¼ hIðxnj ÞDx.

(2) Solve for reaction first. The equation oh
ot ¼ �2hðoh

ox Þ
2 is modeled by a set of ordinary differential equations

oCj

ot ¼ �2CjðoxhjÞ
2 for the particles, where oxhj = oxh(xj) is the numerical approximation of ðoh

ox Þx¼xj
.

Similarly, we denote the numerical approximation of h(xj) as hj = h(xj). The ordinary differential equa-
tions are discretized in time using the improved polygon method [2].

(3) Solve for diffusion. The equation oh
ot ¼ o

ox ðh
2 oh
oxÞ is approximated by remeshing using the K0

3 interpolation
kernel (16). m(xj) and ðom

ox Þx¼xj
are evaluated from the values of hj and oxhj. in this case, the absence of

convection forces the particles to stay at the grid location all the time. Hence, to demonstrate the capa-
bility of the method in performing remeshing and diffusion concurrently, the uniform grid for the target
particle locations is obtained by shifting the initial particle locations by a distance randomly selected at
each time step, i.e., xnj ¼ x0j þ qn, where qn is a random number in ½� Dx

2
; Dx
2
Þ. To satisfy the boundary con-

dition, the particles generated outside the domain during the remeshing process are reflected back into
the domain. For example, a particle at xnj < 0 is moved to �xnj at the end of the diffusion substep without
changing its strength. In a similar way, we move the particles with xnj > 1 to 2� xnj .

(4) Advance time by Dt and repeat steps (2) and (3).

To evaluate h(x) and oxh(x), we use the following expressions:
hðxÞ ¼
XN
i¼1

Ci /rðx� xiÞ þ /rðxþ xiÞ þ /rðx� 2þ xiÞð Þ;

oxhðxÞ ¼
oh
ox

¼
XN
i¼1

Ci /
0
rðx� xiÞ þ /0

rðxþ xiÞ þ /0
rðx� 2þ xiÞ

� �
.

ð46Þ
The two additional terms in the summation represent the image particles included to satisfy the boundary con-
dition. We use a cutoff function /r 2 C4

cðRÞ
/rðxÞ ¼
1

r
/

x
r

� 	
; ð47Þ
where
/ðxÞ ¼
693
512

ð1� 5x2 þ 10x4 � 10x6 þ 5x8 � x10Þ jxj < 1;

0 1 6 jxj.

�
ð48Þ
For supp/r = [�r, r], the image particles included in (46) are enough to satisfy the correct boundary condi-
tions for r < 1. Other cutoff functions may be used as long as they are of compact support and in C3

BðRÞ, which
is required to obtain convergence in L1 as shown in Appendix A.

Computations were performed for t = [0,0.011] in 4-byte precision on a Pentium 4 workstation. We chose
Dt/Dx2 = 1.1 to satisfy the non-negativity constraint (29). Fig. 11 and Table 1 show the convergence of the
approximate solution to the analytical solution with the numerical parameters being refined. Note that both
r and Dx/r should approach zero to suppress noise at high wave numbers. One can also notice that the numer-
ical error is more prominent near the boundary. The initial conditions with their images are only continuous at
the boundary, and hence the error near the boundary in the initial discretization is larger than that in the do-
main interior. However, the overall trend of convergence is clear.
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Fig. 11. Profiles at t = 0.011 for different numerical parameters compared against the analytical solution obtained from (42).

Table 1
L1 error for different numerical parameters at t = 0.011

r/Dx = 3 r/Dx = 6

Dx = 0.1 1.0266 · 10�2

Dx = 0.05 4.7675 · 10�3

Dx = 0.01 8.7498 · 10�3 8.6109 · 10�4

Dx = 0.005 4.6580 · 10�4
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6. Summary

In this article, we propose a scheme to treat diffusion and remeshing, simultaneously, in Lagrangian vortex
methods. Interpolation kernels similar to those that have been used for remeshing of particle distributions in
inviscid vortex simulations are obtained by utilizing the moment-based redistribution method. The stability
properties of the new interpolation kernels were investigated by using analogies to Eulerian schemes. Numer-
ical examples show that the scheme works well in test problems. Results suggest that the scheme can be
successfully applied to complex problems, including cases in which nonlinear diffusion plays an important
role.

Our work suggests a number of avenues for future research. For instance, the characterization of a particle
distribution through its moments suggests the possibility of an adaptive method for redistribution. Not only
the d distribution but also the cutoff function can be explicitly considered during the redistribution process
[21,29,33]. By characterizing the cutoff function of a particle through its moments, one may develop redistri-
bution formulae for particles with different cutoff radii, endowing Lagrangian vortex methods with multi-level
capabilities.
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Appendix A. Consistency of the redistribution scheme (9)

In [33], the convergence of the redistribution method was established for the case of constant diffusivity.
The argument used in that work relied heavily on the fact that the fundamental solution in this case is explic-
itly given by a Gaussian distribution. Since the fundamental solution of (1) is not a Gaussian distribution, the
argument given in [33] is not directly applicable to the analysis of the redistribution formulae (9). In this sec-
tion, we provide a brief proof for the consistency of these formulae. Once the consistency is established, the
convergence follows by having an additional condition on stability.

To establish consistency, we use the following estimate for the fundamental solution of a uniformly para-
bolic linear equation [20]:
jDr
tD

s
xZðx; n; t; sÞj 6 cðt � sÞ�

dþ2rþs
2 exp �C

jx� nj2

t � s

 !
; ðA:1Þ
where 2r + s 6 2. Two consequences of this estimate are exploited in the following discussion. The first is quite
straightforward. Let f be a function, which is continuous and globally Lipschitz with a constant K in Rd. Then,
we can show that
Z

Rd
Zðx; n; t; t � DtÞf ðxÞdx� f ðnÞ










 6 cK

ffiffiffiffiffi
Dt

p Z
Rd

jzj expð�Cz2Þdz; ðA:2Þ
which in turn shows that j
R
Rd Zðx; n; t; t � DtÞf ðxÞdx� f ðnÞj ¼ Oð

ffiffiffiffiffi
Dt

p
Þ. The other important consequence is

that
 Z
jx�njP

ffiffiffiffi
Dt

pð Þ1��
Zðx; n; t; t � DtÞj j x� nj jmdx 6

Z
jx�njP

ffiffiffiffi
Dt

pð Þ1��
cDt�d=2 exp �C

jx� nj2

Dt

 !
x� nj jmdx

6

Z
jzjP

ffiffiffiffi
Dt

pð Þ��
c expð�Cz2Þ z

ffiffiffiffiffi
Dt

p


 


mdz ¼ oðDtqÞ ðA:3Þ
for 0 < � < 1, q > 0 and m P 0.
With these estimates at hand, we may show the consistency of the redistribution formulae (9) in the sense

that the new particle distribution truly approximates the fundamental solution. Each source particle is as-
sumed to be redistributed into target particles within a ball of radius R, centered at the location of the source
particle. we assume that R scales as O(h), where h ¼

ffiffiffiffiffi
Dt

p
.

First, we show that each moment evolves consistently. For the 0th moment, Gn
0;i ¼ Gn

0;i ¼ 1, if f n
ij satisfies

(9). Thus the moment matching condition is satisfied exactly. For Gn
1;i, we have
d

dt
Gn

1;i � Gn
1;i

� 	
¼
Z
R

Zðx; xn�1
i ; t; 0Þ dm

dx
dx� dm

dx

� �
x¼xn�1

i

¼ OðDt1=2Þ
by the application of (A.2). Thus, j Gn
1;i � Gn

1;i j¼ OðDt3=2Þ. For Gn
2;i, we separate the integral into two parts.
d

dt
Gn

2;i � Gn
2;i

� 	








 6

Z
R

2mðxÞ � 2mðxn�1
i Þ



 

Zðx; xn�1
i ; t; 0Þdxþ

Z
R

2ðx� xn�1
i Þ dm

dx










Zðx; xn�1

i ; t; 0Þdx.
The first term is O(Dt1/2) by the application of (A.2). The second term is estimated as follows:
Z
R

2ðx� xn�1
i Þ dm

dx










Zðx; xn�1

i ; t; 0Þdx 6
Z
X

2ðx� xn�1
i Þ dm

dx










Zðx; xn�1

i ; t; 0Þdx

þ
Z
Xc

2ðx� xn�1
i Þ dm

dx










Zðx; xn�1

i ; t; 0Þdx;
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where X ¼ fx 2 R; s.t. jx� xn�1
i j < R0hg, where R 0 = O(h��). It can be shown that the first term is O(R 0h) =

O(Dt1/2��), and the second term is o(hq) for all q > 0 from (A.3). Thus, we have jGn
2;i � Gn

2;ij ¼ OðDt3=2��Þ.
Therefore, for the ith source particle, the redistribution formulae (9) give f n

ij satisfying the following con-
ditions around xn�1

i for M = 1, i.e.,
8jkj 6 M þ 1; 9Ck;M 0 ; s.t. 8i; n; Gn
k;i � Gn

k;i




 


 6 Ck;M 0hM
0
Dt ðA:4Þ
for any M 0 satisfying M � 1 < M 0 < M.
We are finally at the stage where we can estimate the error between the new particle distribution and the

fundamental solution using (A.4). From the Taylor series remainder theorem of a test function /, we get
8/ 2 CMþ2
B ðRÞ;Z

R

XN
j¼1

f n
ijdðx� xnj Þ � Zðx; xn�1

i ;Dt; 0Þ
 !

/ðxÞdx













6

X
jkj6Mþ1

1

k!
k/kCMþ2

B ðRÞ

Z
R

ðx� xn�1
i Þk

XN
j¼1

f n
ijdðx� xnj Þ � Zðx; xn�1

i ;Dt; 0Þ
 !

dx














þ
X

jkj¼Mþ2

1

k!
k/kCMþ2

B ðRÞ

Z
X
ðx� xn�1

i Þk
XN
j¼1

f n
ijdðx� xnj Þ � Zðx; xn�1

i ;Dt; 0Þ
 !

dx














þ
X

jkj¼Mþ2

1

k!
k/kCMþ2

B ðRÞ

Z
Xc
ðx� xn�1

i ÞkZðx; xn�1
i ;Dt; 0Þdx










. ðA:5Þ
The first term in the right hand side is OðhM 0
DtÞ by the assumed moment conditions, and the last term is o(hq)

for all q > 0 by the estimate (A.3). The second term is OðR0Mþ2hMDtÞ, because
8x 2 X; ðx� xn�1
i ÞðkÞ




 


 6 ðR0hÞMþ2 ¼ R0Mþ2hMDt.
Since R = O(h), we may take � as small as we want. Therefore, we have the following result for all M 0 < M:
XN
j¼1

f n
ijdðx� xnj Þ � Zðx; xn�1

i ;Dt; 0Þ
�����

�����
ðCMþ2

B ðRÞÞ0
6 ChM

0
Dt; ðA:6Þ
Using a standard argument with the additional condition of stability, we can also show that the global trun-
cation error behaves as OðhM 0 Þ, where M 0 < M. This is not as sharp as what we had for the case of constant
diffusivity considered in [33], where the global truncation error was O(hM).

We have shown consistency in the distribution sense [12,37], i.e., in ðCMþ2
B ðRÞÞ0, not in the typical Lp spaces.

The reason is that the spirit of the method can be more clearly recognized in terms of the approximation of the
fundamental solution by d distributions, which cannot be treated in Lp. However, it is easy to show that the
methods also generate a convergent sequence in Lp by convolving the particle distribution with a sufficiently
regular cutoff function /. For example, given / 2 CMþ2

B ðRdÞ , we define /rðxÞ � 1
rd /ðxrÞ. Then, for a regular

enough solution u,
ku� u � /rk1 6 ku� u � /rk1 þ kðu� uÞ � /rk1;

where u is the approximation made up with a linear superposition of d distributions, i.e.,
ku� ukðCMþ2

B ðRÞÞ0 ¼ OðhM 0 Þ. It is easy to see that
9m1;m2 > 0; s.t. ku� u � /rk1 ¼ Oðrm1Þ;

kðu� uÞ � /rk1 6 sup
x2Rd

Z
Rd
ðu� uÞðyÞ/rðx� yÞdy










 6 kðu� uÞk

CMþ2
B ðRÞð Þ0k/rkCMþ2

B ðRÞ ¼ OðhM 0
=rm2Þ.
This shows that the error in L1 can be estimated as Oðrm1Þ þOðhM 0
=rm2Þ. We note that this error estimate

does not include any detailed consideration on the contribution of the error from initial discretization, and



262 D. Wee, A.F. Ghoniem / Journal of Computational Physics 213 (2006) 239–263
the error scaling as Oðrm1Þ is due to variable diffusivity, and not due to initial discretization. This additional
error does not occur when one only deals with the case of constant diffusivity, where one can use convolution
to separate the cutoff function from the error estimate, assuming that the cutoff function behaves well. How-
ever, in the case of variable diffusivity, the independency of the error estimate from the cutoff function is lost
even in the redistribution method.
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